2024年湖南成考高起點《數學(文)》重點知識復習(2)
湖南成考幫為幫助考生更好的復習,精心整理了“2024年湖南成考高起點《數學(文)》重點知識復習(2)”供考生參考,具體如下:
數列的通項與求和
數列是函數概念的繼續和延伸,數列的通項公式及前n項和公式都可以看作項數n的函數,是函數思想在數列中的應用.數列以通項為綱,數列的問題,最終歸結為對數列通項的研究,而數列的前n項和Sn可視為數列{Sn}的通項。通項及求和是數列中最基本也是最重要的問題之一,與數列極限及數學歸納法有著密切的聯系,是成人高考對數列問題考查中的熱點,本點的動態函數觀點解決有關問題,為其提供行之有效的方法.
●難點磁場
(★★★★★)設{an}是正數組成的數列,其前n項和為Sn,并且對于所有的自然數n,an與2的等差中項等于Sn與2的等比中項.
(1)寫出數列{an}的前3項.
(2)求數列{an}的通項公式(寫出推證過程)
(3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).
●案例探究
[例1]已知數列{an}是公差為d的等差數列,數列{bn}是公比為q的(q∈R且q≠1)的等比數列,若函數f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求數列{an}和{bn}的通項公式;
(2)設數列{cn}的前n項和為Sn,對一切n∈N*,都有 =an+1成立,求 .
命題意圖:本題主要考查等差、等比數列的通項公式及前n項和公式、數列的極限,以及運算能力和綜合分析問題的能力.屬★★★★★級題目.
知識依托:本題利用函數思想把題設條件轉化為方程問題非常明顯,而(2)中條件等式的左邊可視為某數列前n項和,實質上是該數列前n項和與數列{an}的關系,借助通項與前n項和的關系求解cn是該條件轉化的突破口.
錯解分析:本題兩問環環相扣,(1)問是基礎,但解方程求基本量a1、b1、d、q,計算不準易出錯;(2)問中對條件的正確認識和轉化是關鍵.
技巧與方法:本題(1)問運用函數思想轉化為方程問題,思路較為自然,(2)問“借雞生蛋”構造新數列{dn},運用和與通項的關系求出dn,絲絲入扣.
解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,
∴a3-a1=d2-(d-2)2=2d,
∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
∴ =q2,由q∈R,且q≠1,得q=-2,
∴bn=b·qn-1=4·(-2)n-1
(2)令 =dn,則d1+d2+…+dn=an+1,(n∈N*),
∴dn=an+1-an=2,
∴ =2,即cn=2·bn=8·(-2)n-1;∴Sn= [1-(-2)n].
以上是“2024年湖南成考高起點《數學(文)》重點知識復習(2)”的相關內容,想獲取更多關于湖南成人高考的相關資訊,如成人高考報名時間、考試時間、報考條件、備考知識等,敬請關注湖南成考幫。
聲明:
(一)由于考試政策等各方面情況的不斷調整與變化,本網站所提供的考試信息僅供參考,請以權威部門公布的正式信息為準。
(二)網站文章免費轉載出于非商業性學習目的,版權歸原作者所有。如您對內容、版權等問題存在異議請與本站聯系,我們會及時進行處理解決。
本文地址:http://www.888393.cn/shuxuewen/13510.html